
Abstract. This article describes the application of a
genetic algorithm for the structural optimization of 19±
50-atom clusters bound by medium-range and short-
range Morse pair potentials. The GA is found to be
e�cient and reliable for ®nding the geometries corre-
sponding to the previously published global minima
[Doye JPK, Wales DJ (1997) J Chem Soc Faraday Trans
93: 4233]. Using the genetic algorithm, only a relatively
small number of energy evaluations and minimizations
are required to ®nd the global minima. By contrast, a
simple random search algorithm often cannot ®nd the
global minima of the larger clusters, even after many
thousands of searches.
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1 Introduction

The genetic algorithm (GA) [1±3] is a search technique
based on the principles of natural evolution. It uses
operators that are analogues of the evolutionary pro-
cesses of genetic crossover, mutation and natural
selection to explore multidimensional parameter spaces.
A GA can be applied to any problem where the variables
to be optimized (genes) can be encoded to form a string
(chromosome). Each string represents a trial solution of
the problem. The GA operators exchange information
between the strings to evolve new and better solutions. A
crucial feature of the GA approach is that it operates
e�ectively in a parallel manner: many di�erent regions of
parameter space are investigated simultaneously. Fur-
thermore, information concerning di�erent regions of
parameter space is passed actively between the individ-
ual strings by the crossover procedure, thereby dissem-
inating genetic information throughout the population.
The GA is an intelligent search mechanism that is able to

learn which regions of the search space represent good
solutions, via the concept of schemata [1].

Whether one is using empirical atomistic potentials or
ab initio molecular orbital or density functional theory
to describe the bonding in clusters, one of the objectives
is to ®nd, for a given cluster size, the arrangement of
atoms (or ions or molecules) corresponding to the lowest
potential energy, i.e. the global minimum on the po-
tential-energy hypersurface. However, as the number of
minima rises extremely rapidly with increasing cluster
size, ®nding the global minimum is a nontrivial (in fact
NP-hard!) problem. Traditional Monte Carlo and mo-
lecular dynamics simulated annealing approaches often
encounter di�culties ®nding global minima for partic-
ular types of interatomic interactions (such as, for ex-
ample, the short-range Morse potential discussed later)
[4]. It is for this reason that GAs have found increasing
use in the area of ®nding global minima for clusters,
i.e. for cluster geometry optimization.

The use of GAs for optimizing cluster geometries was
pioneered by Hartke (for small silicon clusters) [5] and
Xiao and Williams (for molecular clusters) [6]. In both
cases the cluster geometries were binary encoded, with
the genetic operators acting in a bitwise fashion on the
binary strings. Hartke and coworkers have subsequently
published the results of GA geometry optimizations for
a number of di�erent types of cluster [7±10].

An important stage in the evolution of GAs for
cluster optimization occurred when Zeiri [11±13] intro-
duced a GA that operated on the real-valued Cartesian
coordinates of the clusters. This approach allowed the
cluster to be represented in terms of continuous variables
and removed the requirement for encoding and decoding
binary genes.

The next signi®cant step in the development of GAs
for cluster optimization was due to Deaven and co-
workers [14, 15], who performed a gradient-driven local
minimization of the cluster energy after each new cluster
was generated. As Doye and Wales [16] have pointed
out, the introduction of local minimization e�ectively
transforms the cluster potential-energy hypersurface into
a stepped surface, where each step corresponds to a
basin of attraction of a local minimum on the potential-
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energy surface. This simpli®cation of the surface greatly
facilitates the search for the global minimum by reducing
the space that the GA has to search. This same principle
underpins the basin hopping Monte Carlo method de-
veloped by Doye and Wales [16] and the ``Monte Carlo
plus energy minimization'' approach of Li and Scheraga
[17]. These related methods have proved very e�cient for
the structural optimization of clusters, crystals and
biomolecules [18]. In the GA context, such local mini-
mization corresponds to Lamarckian, rather than Dar-
winian evolution, as individuals pass on a proportion of
the characteristics that they have acquired to their o�-
spring. In the case of clusters, these acquired charac-
teristics are the geometries after local minimization,
rather than the characteristics they themselves inherited.

Another signi®cant development in cluster optimiza-
tion GAs, also due to Deaven and coworkers [14, 15],
was the introduction of the three-dimensional ``cut and
splice'' crossover operator. This operator, which has
been employed in most subsequent cluster GA work,
gives a more physical meaning to the crossover process.
In this crossover mechanism, good schemata correspond
to regions of the parent clusters which have low-energy
local structure.

Recent work on cluster geometry optimization using
GAs, for a variety of potentials and types of cluster, has
been reported by Neisse and coworkers [19±22], Pullan
[23±25], Hobday and Smith [26], Curotto et al. [27],
Wolf and Landman [28] and Chaudhury and Bhatta-
charyya [29]. Michaelian, GarzoÂ n and coworkers [30±33]
have developed a ``symbiotic algorithm'', based on GA
principles, and applied it to metal clusters bound by
many-body potentials. An up-to-date database of the
application of GAs (and other evolutionary algorithms)
to clusters (and other optimization problems) is main-
tained by Clark [34].

To our knowledge, GAs have not previously been
employed to optimize clusters with potential-energy
surfaces described by the Morse potential. Doye and
Wales [4] have described the structural consequences of
varying the range of the Morse potential. Using the basin
hopping Monte Carlo approach [16], they found global
minima for Morse clusters with di�erent range parame-
ters and noted that the short-range Morse potential
(which has many local minima and a very ``noisy'' po-
tential-energy surface) presents a particular challenge for
global optimization techniques [4]. Their results (cluster
coordinates and energies) are available on the Cambridge
Cluster Database Web site [35]. We, therefore, decided to
write and apply a GA to ®nd global minima for Morse
clusters, especially in the challenging case of short-range
Morse potentials. Preliminary results for small clusters
(N < 10) using a medium-range Morse potential
(together with many-body potentials for carbon and
aluminium clusters) have previously been reported [36].

2 Methodology

2.1 The Morse potential

The Morse potential is a pairwise additive potential [37], which
depends only on the separations, rij, between pairs of atoms:

V M
ij � De�ea�1ÿrij=re��ea�1ÿrij=re� ÿ 2�� ; �1�

where De is the bond dissociation energy (assumed constant for all
interactions in a homonuclear cluster), re is the equilibrium bond
length and a is the range exponent of the potential. Short-range
Morse potentials correspond to high values of a.

The potential used here, as in the work of Doye and Wales [4], is
a simpli®ed, scaled version of the Morse potential with De and re
both set to 1

V M
ij � ea�1ÿrij��ea�1ÿrij� ÿ 2� : �2�

This provides a non-atom-speci®c potential which depends on a
single parameter: the range exponent, a. In this study, we com-
pare short-range (a � 14) and medium-range (a � 6) Morse
potentials.

The total potential energy of a cluster of N atoms is obtained by
summing over all atom pairs:

Vclus �
XNÿ1

i

XN

j>i

V M
ij : �3�

It should be noted that, as all Vclus values are negative, the
expression ``low energy'' actually refers to high values of ÿVclus.

2.2 The GA

A ¯ow chart representing the operation of our cluster geometry
optimization GA program [38] is shown in Fig. 1 and the basic
features of the GA are described in the following sections.

Fig. 1. Schematic ¯ow chart for the cluster geometry optimization
GA program
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2.2.1 Generation of the initial population

For a given cluster nuclearity (N ), a number of clusters, Npop,
(typically ranging from 10 to 30) are generated at random to form
the initial population (the ``zeroth generation''). We have followed
the approach of Zeiri [11±13] in using the real-valued Cartesian
coordinates of the cluster atoms as the genes. The x; y and z coor-
dinates are chosen randomly in the range �0;N1=3� [39]. This ensures
that the cluster volume scales correctly with cluster size, i.e. linearly
with N . All the clusters in the initial population are then relaxed
into the nearest local minima, by minimizing the cluster potential
energy as a function of the cluster coordinates, using the quasi-
Newton (L-BFGS) routine [40, 41]. This routine utilizes analytical
®rst derivatives of the potential.

The GA operators of mating (crossover), mutation and selec-
tion (on the basis of ®tness) are performed to evolve one generation
into the next. In this work, we use the term ``mating'' to refer to the
process by which two parent clusters are combined to generate
o�spring. The mechanism, at the chromosome level, by which
genetic material is combined, is termed ``crossover''.

2.2.2 Fitness

Each cluster is assigned a ®tness value based on its total potential
energy (Vclus), such that low-energy clusters (high ÿVclus) have high
®tness and high-energy clusters (low ÿVclus) have low ®tness. We
have adopted dynamic ®tness scaling so that, in each generation,
the ®ttest (lowest energy) cluster has a ®tness of 1. We have found
that the most suitable ®tness function, i.e. that leading to the most
e�cient GA, has an exponential form. The ®tness (Fi) of the ith
member of the population (with Vclus � Vi ) is given by

Fi � exp ÿq
Vi ÿ Vmin

Vmax ÿ Vmin

� �� �
; �4�

where Vmax and Vmin are the Vclus values of the highest and lowest
energy clusters in the current population and q is a scaling factor
(typically set to 3).

The ®tness of the best (lowest energy) member of the population
(with Vi � Vmin) is 1, while the ®tness of the worst (with Vi � Vmax) is
eÿq.

2.2.3 Selection of parents for mating

The selection of parents for mating is accomplished using a variant
of the roulette wheel method [2]. A cluster is picked at random and
is accepted for mating if its ®tness value is greater than a randomly
generated number between 0 and 1, i.e. if Fi > R�0; 1�. If the can-
didate cluster is rejected for mating, then another is picked and the
process is repeated. In this way, low-energy clusters (with high
®tness values) are more likely to be selected for mating and there-
fore to pass on their structural characteristics into the next gener-
ation. (Each cluster may be chosen more than once for mating
but self-mating is not allowed.) Once a pair of parents has been
selected, the parents are subjected to the mating operation.

2.2.4 Mating/crossover

Mating is carried out using a variant of the cut and splice crossover
operator of Deaven and coworkers [14, 15]. In the original work of
Deaven and Ho, a plane, passing through the centre of mass of
each cluster was chosen. The clusters were then cut about this plane
and complementary halves were spliced together in order to gen-
erate the o�spring or child clusters. In our implementation of the
cut-and-splice operation, as shown schematically in Fig. 2, random
rotations (about two perpendicular axes) are performed on both
parent clusters and then both clusters are cut horizontally ± parallel
to the xy plane ± at a random point and complementary fragments
are spliced together. In practice, this is accomplished by ranking the
coordinates of the component atoms of each rotated cluster in
order of decreasing z coordinate and then selecting the ®rst (highest
z) N ÿM coordinates from the ®rst parent and the last (lowest z) M
coordinates from the second parent and combining them to gen-
erate a child cluster with N atoms. The choice of a random cross-
over point, which reduces to the selection of a random integer M in

the range �1; N ÿ 1�, leads to a greater number of possible o�spring
from a given pair of parents, thereby helping to maintain popula-
tion diversity. Though we have chosen only to generate one child
from each mating operation, the creation of two children may be
desirable in cases where mating leads to too few children of com-
parable ®tness to their parents.

Mating continues until a predetermined number of matings
(Nmat) have occurred. This corresponds to the generation of Nmat

children. The number of matings is generally set to approximately
80% of the population size, i.e. Nmat � int�0:8Npop�. Unless selected
for mutation (see later), the child clusters are subsequently relaxed
into the nearest local minima, as described previously. The local
minimization step, obviously changes the structure of the child
cluster, and this structural rearrangement will be greatest in the
region of the join between the two fragments donated by its parents.
As the clusters get larger, however, the perturbation due to the local
minimization should become relatively smaller and con®ned to the
join region. In this way, the principle of schemata (where fragments
with low-energy arrangements of atoms are more likely to be passed
on) should apply.

2.2.5 Mutation

While the mating/crossover operation leads to a mixing of genetic
material in the o�spring, with the exception of the small pertur-
bation in the join region, no new genetic material is introduced. For
small populations, this can lead to population stagnation and
premature convergence on a nonoptimal structure. In an attempt to
avoid stagnation and to maintain population diversity, a mutation
operator is introduced.

In our GA, mutation is performed on the set of Nmat o�spring,
with each child cluster having the same probability (Pmut) of being
mutated. Thus, in each cycle, the number of mutants created is
approximately PmutNmat. Mutation is achieved by assigning new
random coordinates (again in the range �0; N 1=3�) to approximately
one-third of the atoms in the cluster.

Mutant clusters are subsequently relaxed into the nearest local
minima, as described previously.

2.2.6 ``Natural selection''

We have adopted a steady-state GA, i.e. one that employs a con-
stant population size, so the next stage of the GA is to select Npop

clusters to form the next generation. The set of Npop ``old'' clusters
(from the previous generation) and the Nmat ``new'' clusters (chil-
dren and mutants) are ranked in order of potential energy. The top
Npop clusters, i.e. those with lowest energy and, therefore, highest

Fig. 2. The mating procedure
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®tness, are then selected to constitute the population in the next
generation.

This selection process, which is the analogue of natural selection
in biological evolution, is performed on the basis of ®tness ±
survival of the ®ttest! Since ®tness is directly related to potential
energy, through Eq. (3), however, it is not actually necessary to
calculate ®tnesses prior to selection.

Our GA can be described as ``elitist'', since a minimum of 20%
(Npop ÿ Nmat, with Nmat � 0:8Npop) of the lowest energy clusters
from the previous generation are carried forward to the next gen-
eration. Elitism ensures that the lowest energy cluster found during
the run of the GA will not be lost, in other words the best member
of the population cannot get worse.

2.2.7 Subsequent generations

Once the new generation has been formed, the potential energies of
the best (Vmin) and worst (Vmax) members of the population are
recorded and the ®tness values calculated for the entire population.
The whole process of mating, mutation and selection is then re-
peated for a speci®ed number (Ngen) of generations or until the
population converges (i.e. all clusters are identical) ± ideally on
the structure corresponding to the global minimum. Because of the
stochastic nature of the GA, the GA program is run several times
for each cluster nuclearity.

2.2.8 Values of GA parameters

Our cluster-geometry-optimization GA program [38] was used to
study Morse clusters (a � 6 and 14) with N � 19±50. Preliminary
calculations were performed on a number of trial clusters and
the following optimum values were obtained for the GA program
parameters: Npop � 10; Nmat � 8; Pmut � 0:1; and Ngen � 10±300
(increasing with cluster size).

2.3 Random search
A random search (RS) algorithm was also used to illustrate the
problem in locating global minima for even quite simple pair
potentials and to demonstrate the e�ciency of the GA for ®nding
the global minima. The RS algorithm, which has been discussed
in detail elsewhere [42], generates a large number of clusters
randomly, as described previously, and relaxes them, using the
L-BFGS routine, into the nearest minimum.

3 Results and discussion

3.1 Comparison of GA and RS methods

The e�ciency of the GA was compared with the RS
algorithm by performing ®ve di�erent runs of the GA
and the RS algorithm for each of ®ve cluster sizes (N )
and a Morse exponent (a) of 6. Di�erent random
number seeds were used in the ®ve runs so as to generate
distinct initial populations for the GA program and a
di�erent set of random starting geometries for the RS
algorithm.

The success or failure of the RS algorithm in ®nding
the previously published [4] global minima is summa-
rized in Table 1. Nsearch is the number of random
searches performed in each run of the RS program, i.e.
the number of starting geometries which are minimized
using the L-BFGS routine. The table shows that the RS
algorithm was only able to ®nd the lowest energy
structure for the two smallest cluster sizes. Since the
number of minima rises exponentially with increasing
cluster size [18], even doubling or quadrupling the
number of searches fails to ®nd the global minima for

N � 40 and 50. In the case of the 50-atom cluster,
minimizing 10000 random cluster geometries (®ve runs
of 2000 searches each) failed to locate the global mini-
mum! This problem will be even worse for the short-
range (a � 14) Morse potential, which has a greater
number of local minima [4].

The number of calls (Nmin) made to the L-BFGS local
minimization routine (until the previously published [4]
global minimum was found) for each of the separate
runs of the GA are listed in Table 2. Ranges are given
for Nmin because it is only known in which generation the
global minimum was found and 0:8� Npop new clusters
(children and mutants) are generated (and minimized) in
each generation. The average range is also given for each
of the ®ve nuclearities. These results demonstrate that
the GA was able to locate the global minimum in each of
the runs, for all cluster sizes. As expected, the average
number of minimizations increases with increasing
cluster size, re¯ecting the increase in the number of local
minima. This trend explains why, for larger clusters, we
increase the number of generations (Ngen) for which the
GA is run. The success of the GA compared with the RS
algorithm is undeniable. We are currently working on a
detailed comparison of the e�ciency and reliability of
our GA relative to other global optimization techniques,
such as Monte Carlo, molecular dynamics simulated
annealing and Monte Carlo basin hopping.

3.2 GA optimization of 19±50-atom Morse clusters

Our GA has located all the previously published global
minima [4] for Morse clusters with 19±50 atoms, both
for medium-range (a � 6) and short-range (a � 14)
Morse potentials. As we did not ®nd any lower energy
structures in this size regime, our results support the
global minima assigned by Doye and Wales on the basis
of their basin hopping Monte Carlo optimizations [4].
The potential energies (Vclus) of the global minima are
listed in Table 3. The fact that the global minima for
a � 14 have higher (less negative) energies than those for
a � 6 is because the short range of the potential results
in the stabilizing contributions from remote atoms being
relatively unimportant. This also explains why the
di�erence in Vclus increases with N . The di�erence scales
almost linearly with size, as evidenced by the fact that
the di�erence in average binding energies,

DEb � Eb�a � 6� ÿ Eb�a � 14� ; �5�

Table 1. Indication of the success or failure of the random search
(RS) algorithm to ®nd the reported global minima for ®ve runs of the
RS routine at each of ®ve cluster nuclearities (N) for a � 6.Nsearch is
the number of searches performed in each run of the RS algorithm

N Nsearch Global minimum found?

Run 1 Run 2 Run 3 Run 4 Run 5

20 50 No No Yes Yes Yes
30 500 No Yes No No No
40 1000 No No No No No
50 2000 No No No No No
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with

Eb � ÿVclus

N
; �6�

is approximately independent (about 0.4) of cluster size.
The structures of the global minima for a � 6 and

14 are shown in Table 4. These structures have been
discussed in detail by Doye and Wales [4], the most
obvious di�erence between the two potentials being
that the longer-range (a � 6) potential tends to favour
polytetrahedral, icosahedral geometries, while the
short-range (a � 14) potential favours decahedral and
face-centred-cubic-like packing (such as the truncated
octahedral cluster which is the global minimum for
N � 38).

3.3 Cluster evolution

Evolutionary progress plots (EPPs [43]) of energy (Vmin,
Vmax and Vave ± the average value of Vclus for the
population) as a function of generation are shown in
Fig. 3 for two cluster sizes (N � 38 and 50) for both
a � 6 and 14.

In all cases there is a rapid improvement in the
population (a sharp drop in Vmin, Vmax and Vave) in
the early generations relative to the initial, randomly

Table 3. Energies (Vclus/eV) of global minima found for Morse
clusters with N = 19±50 atoms for a = 6 and 14

N a = 6 a = 14 N a = 6 a = 14

19 )68.492285 )60.812425 35 )141.957188 )129.737360
20 )72.507782 )64.791953 36 )147.381965 )133.744666
21 )76.529139 )68.783571 37 )151.891203 )138.708582
22 )81.136735 )72.791747 38 )157.477108 )144.321054
23 )86.735494 )77.302495 39 )163.481990 )148.327400
24 )90.685398 )81.309508 40 )167.993097 )152.333745
25 )95.127899 )85.477376 41 )172.526828 )156.633479
26 )100.549598 )90.210764 42 )177.680221 )160.641020
27 )104.745275 )94.219798 43 )183.092699 )165.634973
28 )108.997831 )98.331711 44 )187.626292 )169.642441
29 )114.145949 )102.774589 45 )192.954739 )174.511632
30 )118.432844 )106.765372 46 )199.177751 )178.519320
31 )122.857743 )111.760670 47 )203.704178 )183.508227
32 )127.771395 )115.767561 48 )209.044000 )188.888965
33 )132.287430 )120.741345 49 )215.253702 )192.898412
34 )136.797544 )124.748271 50 )219.820229 )198.455632

Table 2. The number of local
minimization steps (Nmin) re-
quired by the genetic algorithm
(GA) to ®nd the reported global
minimum energy structures for
®ve GA runs at each of ®ve
cluster nuclearities (N) for
a � 6. Npop is the population
size for each of the runs

N Npop Nmin

Run 1 Run 2 Run 3 Run 4 Run 5 Average

20 10 11±16 �10 �10 35±42 11±16 19±24
30 10 27±34 131±138 267±274 163±170 67±74 131±138
40 10 275±282 171±178 59±66 75±82 427±434 203±210
50 10 227±234 235±242 707±714 315±322 451±458 395±402

Fig. 3. Evolutionary Progress
Plots [43] for 38 and 50 atom
Morse clusters with a � 6 and
a � 14
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generated population (``generation 0''). This early
improvement is due entirely to the mating process.
Subsequent, less dramatic improvement occurs in a
stepwise fashion and may be due to mating or mutation.

Figure 3 shows that, in all four cases, the population
converges on a single structure ± as evidenced by Vmin,
Vmax and Vave becoming equal. The converged structure
was found to be the global minimum in each case. The
face-centred-cubic-like truncated octahedral geometry
of the 38-atom (a � 14) Morse cluster is di�cult to
®nd with most global optimization techniques [4], but
is here found before the 100th generation ± even for
a small population size of 10. Comparing EPPs for
N � 38 and N � 50 con®rms that the GA must, in
general, be run for a greater number of generations
for larger cluster sizes. Similarly, comparison of the
EPPs for a � 14 with those for a � 6 con®rms that the

short-range Morse potential is more di�cult to search
[4], taking 2±3 times as many generations to ®nd the
global minima.

4 Conclusions

We have shown that the GA described here is both
e�cient and reliable for ®nding the geometries

Table 4. (Contd.)

Table 4. Global minima for Morse clusters with N = 19±50 atoms
for a � 6 and a � 14
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corresponding to the previously published global min-
ima for Morse clusters with between 19 and 50 atoms ±
both for medium-range (a � 6) and for the more
challenging short-range (a � 14) Morse potentials. A
relatively small number (of the order of tens or
hundreds) of energy evaluations and minimizations are
required before the global minima are found. A
comparison has been made with a simple RS algorithm,
which often cannot ®nd the global minima for the larger
clusters even after performing many thousands of
minimizations.

One of the reasons for choosing Morse clusters for
this study was that a large database of structures and
energies already existed [4, 35], which meant that we
could test the e�ciency and reliability of our GA
program for cluster geometry optimization. Our GA
has been applied to a wide range of clusters bound by
pair and many-body potentials, for which the global
minima were not previously known (or predicted) [36].
Further studies are currently being carried out to
compare our GA with other techniques for global
optimization of cluster geometries for a variety of
cluster types.

Table 4. (Contd.)Table 4. (Contd.)
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The structures and coordinates of the global minima
reported here can be found on the Birmingham Cluster
Web site [44].
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